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Abstract

Background: Diffuse large B-cell lymphoma (DLBCL) is a heterogenous blood cancer, but can be broadly classified
into two main subtypes, germinal center B-cell-like (GCB) and activated B-cell-like (ABC). GCB and ABC subtypes
have very different clinical courses, with ABC having a much worse survival prognosis. It has been observed that
patients with different subtypes also respond differently to therapeutic intervention, in fact, some have argued that
ABC and GCB can be thought of as separate diseases altogether. Due to this variability in response to therapy,
having an assay to determine DLBCL subtypes has important implications in guiding the clinical approach to the
use of existing therapies, as well as in the development of new drugs. The current gold standard assay for
subtyping DLBCL uses gene expression profiling on formalin fixed, paraffin embedded (FFPE) tissue to determine
the “cell of origin” and thus disease subtype. However, this approach has some significant clinical limitations in that
it 1) requires a biopsy 2) requires a complex, expensive and time-consuming analytical approach and 3) does not
classify all DLBCL patients.

Methods: Here, we took an epigenomic approach and developed a blood-based chromosome conformation
signature (CCS) for identifying DLBCL subtypes. An iterative approach using clinical samples from 118 DLBCL
patients was taken to define a panel of six markers (DLBCL-CCS) to subtype the disease. The performance of the
DLBCL-CCS was then compared to conventional gene expression profiling (GEX) from FFPE tissue.

Results: The DLBCL-CCS was accurate in classifying ABC and GCB in samples of known status, providing an
identical call in 100% (60/60) samples in the discovery cohort used to develop the classifier. Also, in the assessment
cohort the DLBCL-CCS was able to make a DLBCL subtype call in 100% (58/58) of samples with intermediate
subtypes (Type Ill) as defined by GEX analysis. Most importantly, when these patients were followed longitudinally
throughout the course of their disease, the EpiSwitch™ associated calls tracked better with the known patterns of
survival rates for ABC and GCB subtypes.

Conclusion: This proof-of-concept study provides an initial indication that a simple, accurate, cost-effective and
clinically adoptable blood-based diagnostic for identifying DLBCL subtypes is possible.
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Background

Diffuse large B-cell lymphoma (DLBCL) is the most
common type of blood cancer and numerous studies
using different methodologies have demonstrated it to
be genetically and biologically heterogeneous [1, 2]. The
two principal DLBCL molecular subtypes are germinal
center B-cell-like (GCB) and activated B-cell-like (ABC),
although more granular definitions of molecular sub-
types have also been proposed. These two primary sub-
types have a high degree of clinical relevance, as it has
been observed that they have dramatically different dis-
ease courses, with the ABC subtype having a far worse
survival prognosis. Perhaps more importantly, as novel
investigational agents to treat GCB and ABC (or non-
GCB) subtypes are evaluated in clinical settings and the
historical observation that overall response rates in unse-
lected patients is low, there is a pressing need to identify
patient subtypes prior to the initiation of therapy. His-
torically, DLBCL subtypes are determined by identifying
the “cell of origin” (COQ). The original COO classifica-
tion was based on the observed similarity of DLBCL
gene expression to activated peripheral blood B cells or
normal germinal center B-cells by hierarchical clustering
analysis [3]. This COO-classification by whole-genome
expression profiling (GEP) classifies DLBCL into acti-
vated B-cell like (ABC), germinal center B-cell like
(GCB), and Type-III (unclassified) subtypes, with the
ABC-DLBCL characterized by a poor prognosis and
constitutive NF-kB activation [3-7]. In their seminal
work, Wright et al. identified 27 genes that were most
discriminative in their expression between ABC and
GCB-DLBCL, and developed a linear predictor score
(LPS) algorithm for COO-classification [5]. These ori-
ginal studies are entirely based on retrospective investi-
gations of fresh-frozen (FF) lymphoma tissues. A major
challenge for the application of this COO-classification
in clinical practice has been an establishment of a robust
clinical assay amenable to routine formalin-fixed
paraffin-embedded (FFPE) diagnostic biopsies. Several
studies have also investigated the possibility of COO
classification of DLBCL using FFPE tissues by quantita-
tive measurement of mRNA expression, including quan-
titative nuclease protection assay [8], GEP with the
Affymetrix HG U133 Plus 2.0 platform or the Illumina
whole-genome DASLassay [9-11], and NanoString
Lymphoma Subtyping Test (LST) technology [12]. Sev-
eral immunohistochemistry (IHC)-based algorithms have
also been investigated to recapitulate the COO-
classification by GEP. In general, these studies demon-
strated high confidence of COO-classification of DLBCL
using FFPE tissues and a robust separation in overall
survival between ABC and GCB subtypes, but suffer
from reproducibility issues, particularly lack of concord-
ance between assays [13-16]. In addition, any IHC-
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based measure requires baseline tissue, which is not al-
ways available and current turnaround times from sam-
ple collection to assay readout are long, making
implementation in clinical practice a challenge.

Among the approaches that have been used historically
to subtype DLBCL, one method for COO assessment uses
an assay that measures the expression of 27 genes from
FFPE tissue by quantitative reverse transcription PCR
(qRT-PCR) using the Fluidigm BioMark HD system [17].
While there are some advantages to this methodology
over existing techniques, the approach still faces some
major obstacles that limit its clinical application in that it
1) requires a tissue biopsy 2) relies on expensive, non-
standard and time-consuming laboratory procedures. As
such, having a blood-based assay would advance the field
by providing a simple, reliable and cost-effective method
for DCBCL subtyping with enhanced clinical applicability.

In this study, we used a novel blood-based assay to deter-
mine COOQ classification in DLBCL patients by focusing on
detecting changes in genomic architecture. As part of the
epigenetic regulatory framework, genomic regions can alter
their 3-dimensional structure as a way of functionally regu-
lating gene expression [18]. A result of this regulatory
mechanism is the formation of chromatin loops at distinct
genomic loci. The absence or presence of these loops can
be empirically measured using chromosome conformation
capture (3C), a measurement technology originally devel-
oped in 2002 [19]. Multiple genomic regions contribute to
epistatic modulation through the formation of stable,
conditional long-range chromosome interactions. The
collective measurement of chromosome conformations at
multiple genomic loci results in a chromosome conform-
ation signature (CCS), or a molecular barcode that reflects
the genomes response to its external environment [18, 20].
For detection, screening and monitoring of CCS we uti-
lized the EpiSwitch platform, an established, high reso-
lution and high throughput methodology for detecting
CCSs. Based on 3C, the EpiSwitch platform has been devel-
oped to assess changes in chromatin structure at defined
genetic loci as well as long-range non-coding cis- and
trans- regulatory interactions [20]. Among the advantages
of using EpiSwitch for patient stratification are its binary
nature, reproducibility, relatively low cost, rapid turn-
around time (samples can be processed in under 24 h), the
requirement of only a small amount of blood (~50pL)
and compliance with FDA standards of PCR-based detec-
tion methodologies. Previous studies developing CCS-
based biomarkers using EpiSwitch have provided valuable
blood-based stratifications in a variety of oncological, im-
munological and neurodegenerative conditions [21-25].
For example, in a recently published study, a stepwise dis-
covery approach was used to develop a 5-marker blood-
based CCS that could identify patients with rheumatoid
arthritis (RA) who were predicted to be likely non-
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responders to the first line therapy, methotrexate (MTX).
When the CCS was applied to samples from a blinded test
cohort of RA patients prior to the initiation of MTX ther-
apy, the panel was able to accurately identify likely non-
responders with a true negative response rate of 86 and
90% sensitivity [25]. Thus, chromosome conformations
offer a stable, binary, readout of cellular states and repre-
sent an emerging class of biomarkers [26].

Here, we used an approach based on the assessment of
changes in chromosomal architecture to develop a
blood-based diagnostic test for DLBCL COO subtyping.
We hypothesized that interrogation of genomic architec-
ture changes in blood samples from DLBCL patients
could offer an alternative method to tissue-based COO
classification approaches and provide a novel, non-
invasive, and more clinically applicable methodology to
guide clinical decision making and trial design.

Materials and methods

Patient characteristics

A total of 118 DLBCL patients with a known COO sub-
type and 10 healthy controls (HC) were used in this
study. The samples were a subset of those collected in
the MAIN study; a phase III, randomized, placebo-
controlled, trial of rituximab plus bevacizumab in ag-
gressive Non-Hodgkin lymphoma (registered at clinical-
trials.gov, NCT identifier: 00486759). Detailed methods
for the randomized, placebo-controlled, phase III MAIN
study have been described previously [27]. Briefly, adult
patients aged >18years with newly-diagnosed CD20-
positive DLBCL were randomized to R-CHOP or R-
CHOP plus bevacizumab (RA-CHOP). Informed consent
was obtained from all patients contributing tumor speci-
mens for biomarker analysis at the time of data cut-off
(November 30, 2011). Blood samples collected from 60
DLBCL patients were used as a development cohort to
identify, evaluate, and refine the CCS biomarker leads.
The patients from this cohort were all typed as high/
strong GCB [28] or ABC [28] with a high subtype spe-
cific LPS (linear predictor scores). The remaining 58
DLBCL samples had intermediate LPS and were deter-
mined as ABC, GCB or Unclassified by Fluidigm testing
(Supplemental Figure 1). These patient samples were not
used for CCSs biomarker discovery and development;
but were used at a later stage to assess the resultant clas-
sifier. The Fluidigm testing was done using tissue ob-
tained from lymph nodes (either as punch biopsies or
removed during surgery), and the EpiSwitch analysis was
done using matched peripheral whole blood collected
from the patients prior to receiving any therapy.

Cell lines
In addition to patient samples, 12 cell lines (six ABC
and six GCB) were also used in the initial stage of the
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biomarker screening to identify the set of chromosome
conformations that could best discriminate between
ABC and GCB disease subtypes (Supplemental Table 1).
Cell lines were obtained from the American Type Cul-
ture Collection (ATCC), the German Collection of Mi-
croorganisms and Cell Cultures (DSMZ), and the Japan
Health Sciences Foundation Resource Bank (JHSF).

COO assay by GEP

RNA was isolated and purified from pre-treatment FFPE
biopsies. DLBCL subtypes were determined by adaption of
the Wright et al. algorithm [5] to expression data from a
custom Fluidigm gene expression panel containing the 27
genes of the DLBCL subtype predictor [29]. Validation of
the COOQ assay by comparing Fludigm qRT-PCR to Affy-
metrix data in a cohort of 15 non-trial subjects revealed a
high correlation between qRT-PCR measurements from
matched fresh frozen (FF) and FFPE samples across 19
classifier genes used. We also found a high correlation be-
tween Affymetrix microarray and Fluidigm qRT-PCR
measurements from the same FF samples. Classifier gene
weights calculated from qRT-PCR data from the Fluidigm
COO assay were highly concordant with weights obtained
from previously published microarray data in an inde-
pendent patient cohort [28]. We observed high correlation
(76% concordance) between LPS derived from the Flui-
digm assay, data in FFPE tumor, and LPS derived from
Affymetrix microarray data in matched FF tissue in the
technical registry cohort, applying the previously de-
scribed gene expression signature [5].

Identification of EpiSwitch markers

A pattern recognition algorithm was used to annotate the
human genome for sites with the potential to form long-
range chromosome conformations. The proprietary EpiS-
witch pattern recognition software [22, 23] operates based
on Bayesian-modelling and provides a probabilistic score
that a region is involved in long-range chromatin interac-
tions. Sequences from 97 gene loci (Supplemental Table 2),
selected based on a systematic literature review for genes
that have been associated with DLBCL, were processed
through the pattern recognition software to generate a list
of the 13,322 chromosomal interactions most likely to be
able to discriminate between DLBCL subtypes. For the ini-
tial screening, array-based comparisons were performed
as described previously [25, 30]. 60-mer oligonucleotide
probes were designed to interrogate these potential inter-
actions and uploaded as a custom array to the Agilent
SureDesign website. Each probe was present in quadrupli-
cate on the EpiSwitch microarray. To subsequently evalu-
ate a potential CCS, nested PCR (EpiSwitch PCR) was
performed using sequence-specific oligonucleotides de-
signed using Primer3. Oligonucleotides were tested for
specificity using oligonucleotide specific BLAST.
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Preparation of genomic templates

Chromatin with intact chromosome conformations from
50 pl of each blood sample was extracted using the EpiS-
witch assay following the manufacturer’s instructions
(Oxford BioDynamics Plc) [21, 23, 24]. The EpiSwitch
microarray and EpiSwitch PCR detection methods were
performed as published previously [25, 30, 31].

Network analysis

The top ten genomic loci that were identified as being
dysregulated in DLBCL were uploaded as a protein list
to the Reactome Functional Interaction Network plugin
in Cytoscape to generate a network of epigenetic dysreg-
ulation in DLBCL. The ten loci were also uploaded to
STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins DB) (https://string-db.org/), a database
containing over 9 million known and predicted protein-
protein interactions [32]. Restricting to only human in-
teractions, the main network (i.e. non-connected nodes
were excluded) was generated. The top false discovery
rate (FDR)-corrected functional enrichments were iden-
tified by Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases
[33-35]. The top ten genomic loci were also uploaded to
the KEGG Pathway Database (https://www.genome.jp/
kegg/pathway.html) to identify specific biological path-
ways that exhibit dysregulation in DLBCL.
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Statistical analysis

Exact and Fisher’s exact test (for categorical variables)
were used to identify discerning markers. The level of
statistical significance was set at p <0.05, and all tests
were 2-sided. The Random Forest classifier was used to
assess the ability of the EpiSwitch markers to identify
DLBCL subtypes. Long term survival analysis was done
by Kaplan-Meier analysis using the survival and survmi-
ner packages in R [36]. Mean survival time was calcu-
lated using a two-tailed t-test.

Results

Initial screening and definition of chromosome
conformations in DLBCL

We employed a step-wise approach to discover and val-
idate a CCS biomarker panel that could differentiate be-
tween DLBCL subtypes (Fig. 1). As a first step in the
discovery of the EpiSwitch classifier, 97 genetic loci
(Supplemental Table 2) previously associated with
DLBCL [1, 37-41] were selected and annotated for the
predicted presence of chromosome conformation inter-
action sites and screened for their empirical presence
using the EpiSwitch CGH Agilent array. The annotated
array design represented 13,322 chromosome interaction
candidates, with an average of 99 distinct cis-
interactions tested at each locus (99 * 64, mean + SD).
This discovery array was used to screen and identify a
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smaller pool of chromosome conformations that could
differentiate between the two main DLBCL subtypes.
The samples used for this step were from GCB and ABC
cell lines (Supplemental Table 1) as well as whole blood
from four typed DLBCL patients (two GCB and two
ABC) and four HCs. The cell lines were grouped into
high ABC and GCB and low ABC and GCB based on
gene expression analysis. The comparisons used on the
array were: 1) individual comparisons of DLBCL patients
to pooled HCs 2) pooled DLBCL samples to pooled HC
samples 3) pooled high ABC compared to pooled high
GCB cell lines, and 4) pooled low ABC versus pooled
low GCB cell lines.

From the array analysis, we identified 1095 statistically
significant chromosomal interactions that differentiated
between high ABC and GCB cell lines and were present
in blood samples from DLBCL patients, but absent in
HCs. These were further reduced to the top 293 interac-
tions using a set of statistical filters, 151 of which were
associated with the ABC subtype and 143 of which were
associated with the GCB subtype. The top 72 interac-
tions from either subtype (36 interactions for ABC and
36 interactions for GCB) were selected for further refine-
ment using the EpiSwitch PCR platform on 60 typed
DLBCL patient samples. For all 118 DLBCL samples, ini-
tial subtype classification was assigned based on the
Wright algorithm, which calculates a linear predictor
score (LPS) from the expression of a panel of 27 genes
[5]. 60 samples were classified as either ABC or GBC
and used to develop the EpiSwitch classifier (the “Dis-
covery Cohort”) and 58 samples were of intermediate
LPS scores and used to evaluate the performance of the
EpiSwitch classifier (the “Assessment Cohort”) (Fig. 1).

Refinement of DLBCL-specific chromosome conformation
interactions and definition of the DLBCL-CCS

The 72 interactions identified in the initial screen were
narrowed to a smaller pool using both the DLBCL pa-
tient samples during the discovery step and a second co-
hort of 60 DLBCL typed (30 ABC and 30 GCB) patient
samples along with 12 HC (Fig. 1). The DLBCL subtype
calls made by the EpiSwitch assay were confirmed using
the Fluidigm platform. The Fluidigm gene expression
analysis was performed on tissue biopsy samples,
whereas whole blood from the same patients was used
for the EpiSwitch PCR assay. The initial steps in refine-
ment were to confirm by PCR that the 72 chromosomal
interactions identified in the initial screen were specific
to DLBCL and were absent in the HC samples. This was
first tested on six untyped DLBCL samples and two HCs
and resulted in identification of 21 interactions that were
specific for DLBCL. Next, we used EpiSwitch PCR to test
24 blood samples from typed DLBCL patient samples
(12 ABC and 12 GCB) to identify DLBCL-specific
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chromosome interactions using Fisher’s test. This re-
sulted in a set of 10 discriminating chromosome con-
formation interactions that could accurately discriminate
between ABC and GCB subtypes and were further evalu-
ated on blood samples from an additional set of 36
DLBCL samples (18 ABC and 18 GCB) (Fig. 1).

To test the accuracy, performance and robustness of
the 10-marker panel, we used Exact test for feature se-
lection on 80% of the complete sample cohort (Total 48
samples: 24 ABC and 24 GCB), with the remaining 20%
(12 samples, 6 ABC and 6 GCB) used for later testing of
the final selected CCSs markers. The data was split 10
times and the Exact test run on each of the splits using
the 80% training set of each split. The composite p-value
for the 10 markers over the 10 splits was then used to
rank the markers. This analysis identified six chromo-
some conformations in the IFNAR1, MAP3K7, STATS3,
TNEFRSF13B, MEF2B, and ANXA11 genetic loci. Col-
lectively, these six interactions formed the DLBCL
chromosome conformation signature (DLBCL-CCS)
(Fig. 2).

Testing the performance of DLBCL-CCS and assessing the
classifier model

The six markers in the DLBCL-CCS were used to gener-
ate a Random forest classifier model and applied to clas-
sify the test sets for each of the data splits (12 samples, 6
ABC and 6 GCB) in the Discovery Cohort of known dis-
ease subtypes. By principal component analysis (PCA),
the DLBCL-CCS classifier was able to separate ABC and

Gene Locus

IFNAR1 |

Fig. 2 The EpiSwitch DLBCL-CCS classifier. The DLBCL-CCS is made
up of measurable changes in the genomic architecture at six
genomic loci. These “gene loops” are either absent or present in
different DLBCL subtypes, for example in the ABC subtype loops in
STAT3, TNFRSF13N and ANXA11 are present while loops in MAP3K?7,
MEF2B and IFNART are absent. The converse pattern is observed in
GBC subtypes
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GCB patients from healthy controls (Supplemental Fig-
ure 2). The composite prediction probabilities for the
DLBCL-CCS is shown in Supplemental Table 3 along
with the odds ratio for each marker and the odd ratio
for the model generated using logistic regression. The
model provided a prediction probability score for ABC
and GCB, ranging from 0.186 to 0.81 (0=ABC, 1=
GCB). The probability cut-off values for correct classifi-
cation were set at <0.30 for ABC and >0.70 for GCB.
The score of <0.30 had a true positive rate (sensitivity)
of 100% (95% confidence interval [95% CI] 88.4—100%),
while a score of >0.70 had a true negative response rate
(specificity) of 96.7% (95% CI 82.8-99.9%). With the
DLBCL-CCS classifier, 60 out of 60 patients (100%) were
correctly classified as either ABC or GCB, when com-
pared to the Fluidigm calls for subtyping (Fig. 3a, Sup-
plemental Table 3). The AUC under the receiver
operating characteristic (ROC) curve for the DLBCL-
CCS classifier on this sample cohort was 1 (Fig. 3b).
Last, we compared the DLBCL subtype calls made by
the DLBCL-CCS to the long-term survival curves of the
patients with known disease subtype. The patients called
as ABC showed significantly worse survival than those
patients called as GBC (Fig. 3c).

Comparative analysis of EpiSwitch DLBCL-CCS and
Fluidigm to classify type Il DLBCL patients

Next, we evaluated the performance of the DLBCL-CCS
the Assessment Cohort of 58 DLBCL patients with a
more intermediate LPS value. We applied the DLBCL-
CCS to assign these patients into DLBCL subtypes and
compared the readouts to those made by Fluidigm. The
DLBCL-CCS made subtyping calls for all 58 samples,
whereas the Fluidigm assay made subtyping calls for 37
of the samples, leaving 21 as “unclassified” (Fig. 4). Of
the 37 samples where subtype calls for both assays was
available, 15 samples (40%) were called similarly by both
assays (8 ABC and 7 GCB) (Fig. 4). Next, we evaluated
the performance of the DLBCL subtype calls made by
the DLBCL-CCS and Fluidigm by comparing the sub-
type calls made at diagnosis with the long-term survival
curves of the Type III patients. As shown in the Kaplan-
Meier survival curves in Fig. 5, the ABC/GBC calls made
by the DLBCL-CCS was able to separate the two popula-
tions based on the known survival trends in DLBCL,
with the ABC subtype having a worse prognosis [42]. In
contrast, the ABC and GCB populations as defined by
Fluidigm showed the opposite of what has been observed
clinically, with samples classified as ABC having longer
survival times than those classified as GCB. Though not
statistically significant, the subtype calls made by the
DLBCL-CCS matched historical clinical observations of
survival differences between the subtypes by Hazard ra-
tio analysis (Supplemental Figure 3). We did find a
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Fig. 3 Overlap of the EpiSwitch DLBCL-CCS and Fluidigm subtype
calls and ROC Curve when applied to the Discovery cohort. A.
Subtype calls made by the EpiSwitch DLBCL-CCS and the Fluidigm
assays on samples of known subtypes. 60 out of 60 samples were
identically called by both assays. B. The receiver operating curve
(ROQ) for the DLBCL-CCS when applied to the Discovery cohort. C.
Kaplan-Meier survival analysis (by progression free survival) of
samples called as ABC (red line) or GCB (blue line) by the DLBCL-
CCS. Samples called as ABC showed a significantly poorer long-term
survival than those called as GCB

significant difference in mean survival time between the
two methods. The mean survival of patients classified as
ABC and GCB by Fluidigm was 651 and 626 days, re-
spectively (p = 0.854), while the mean survival of patients
classified as ABC and GCB by the DLBCL-CCS assay
was 550 and 801 days (p = 0.017) (Fig. 6).

Biological relevance of deregulated DLBCL-CCS loci to
disease

In order to explore the relationship between the loci that
were observed to be epigenetically dysregulated in this
study and biological mechanisms that have previously
been reported to be linked to DLBCL, we performed a
series of network and pathway analyses using the top 10
dysregulated loci as inputs. First, we explored how these
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loci were biologically related by building a Reactome
Functional Interaction Network in Cytoscape which re-
vealed a network centred on NFKB1, STAT3 and
NFATC1 (Fig. 7a). A similar picture emerged when
the 10 loci were used to build a network using
STRING DB, with the most connected hubs centring
on NFKB1, STAT3 and MAP3K7 and CD40 (Fig. 7b).
The top enriched GO term for biological process
was “positive regulation of transcription, DNA-
templated”, the top enriched GO term for molecular
function was “transcriptional activator activity, RNA
polymerase II  transcription regulatory region
sequence-specific binding” and the “Toll-like recep-
tor signalling pathway” was the most enriched KEGG
pathway (Supplemental Table 3).

Discussion

Due to the observed differences in disease progression
for the different DLBCL subtypes, there is a pressing
clinical need for a simple and reliable test that can dif-
ferentiate between ABC and GBC disease subtypes.
Given the aggressive nature of the disease, DLBCL re-
quires immediate treatment. The two main subtypes
have different clinical management paradigms and with
several therapeutic modalities in development that target
specific subtypes, having a rapid and accurate disease
diagnostic is critical when clinical management depends
on knowing disease subtype. The field of COO-
classification in DLBCL has expanded from IHC based
methodologies [13—-16, 43] to DNA microarrays, parallel
quantitative reverse transcription PCR (qRT-PCR) and
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digital gene expression [3-5, 17]. A current favoured
method is based on identification of the COO by GEP
on FFPE tissue and suffers from some technical and lo-
gistical limitations that limit its broad adoption in the
clinical setting. In addition, there are many factors that
affect the performance and reliability of COO-
classification by GEP on FFPE tissue; including the na-
ture/quality of lymphoma specimen, the experimental
methods for data collection; data normalization and
transformation, the type of classifier used, and the prob-
ability cut offs used for subtype assignment. Last, going
from sample collection to an end readout using the Flui-
digm approach is a complex and time-consuming
process with many steps in between having the potential
to introduce performance variability. All of these factors
have an impact on the overall turnaround time of the
assay and limits how it can be used clinically to diagnose
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and inform treatment of the disease using existing medi-
cations as well as select patients for late stage trials for
novel DLBCL therapeutics. Thus, the need for a simple,
minimally invasive and reliable assay to differentiate
DLBCL subtypes is needed.

Using a stepwise discovery approach, we identified a
6-marker epigenetic biomarker panel, the DLBCL-CCS,
that could accurately discriminate between DLBCL sub-
types. When compared to the subtype results derived
from the gene expression signature there was perfect
concordance; which was expected as these were samples
that were used to develop the classifier. The concord-
ance between the two assays when applied to samples
with an intermediate LPS was lower (just over 40%).
This is perhaps expected, as it has been noted that there
is a lack of overall concordance in DLBCL subtype calls
with different methods of classification, and the Type III
samples are perhaps a more heterogenous population
reflecting a more intermediate biology to begin with [44,
45]. However, when we evaluated the predictive classifi-
cation ability of the EpiSwitch assay in the Type III
DLBCL patients followed longitudinally as their disease
progressed, baseline predictions of disease subtype using
the EpiSwitch assay was better at predicting actual dis-
ease subtype based on observed survival curves in pa-
tients with unclassified disease. The observation that the
epigenetic readout based on regulatory 3D genomics used
here is more consistent with actual clinical outcomes than
the transcription-based gold-standard molecular ap-
proaches represents an actionable advance in the manage-
ment of DLBCL. It is also consistent with latest system
biology evaluations of regulatory 3D genomics as a mo-
lecular modality closely linked to phenotypical differences
in oncological conditions [20].

We do note that DLBCL operates on a biological con-
tinuum, with significant heterogeneity in disease biology
between subtypes. By design, the DLBCL-CCS was set up
to classify Type III samples into either ABC or GCB sub-
types. By GEX analysis, the Type III samples were identi-
fied as having intermediate subtype biology so may
represent a more heterogenous population of patients.
However, the overall observation that the DLBCL-CCS
was a better predictor of disease subtype as measured by
clinical progression than using a GEX-based approach and
the fact that the EpiSwitch assay was able to make subtype
calls in all samples, provides an initial indication that this
approach can be applied in a clinical setting to inform on
prognostic outlook, potentially guide treatment decisions,
and provide predictions for response to novel therapeutic
agents currently in development.

In the network analysis, the NF-kB and STAT3 signal-
ling cascades emerged as putative mediators that differ-
entiate between DLBCL subtypes. The role of NF-kB
signalling in DLBCL has been studied before, in fact, one
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of the discriminating features of the ABC subtype is con-
stitutive expression of NF-kB target genes, a mechanism
which has been hypothesized for the poor prognosis in
these patients [7, 46]. In addition, mutations causing
constitutive signalling activation have been observed
predominantly in the ABC subtype for several NF-kB
pathway genes, including TNFAIP3 and MYDS8S8, [47,
48]. In a study published early this year, Liu et al. used a
bioinformatics approach to analyse three sets of previ-
ously published GEP studies (including the study that
was used to develop the current gold standard subtyping
assay) performed on FFPE DLBCL samples to identify
key hub genes and pathways that were associated with
DLBCL subtypes. In addition to validating the expres-
sion of STAT3 as a key gene, this meta-analysis of 500
DLBCL samples identified JAK-STAT and NF-kB as key
pathways associated with the two subtypes of DLBCL
[49]. Specifically, gene set enrichment analysis (GSEA)
analysis revealed that genes involved in the JAK-STAT
signalling pathway were upregulated in ABC and down-
regulated in GCB. As both STAT3 and NF-kB have been
identified as therapeutic targets for DLBCL, the network
analysis here confirms the biological link between the
genomic loci in the DLBCL-CCS and mechanisms of
disease progression and supports the prognostic and
monitoring capabilities of the EpiSwitch CCSs identified
here [50-53]. In addition to validating known mecha-
nisms of DLBCL, the network analysis here identified a
novel potential target for therapeutic intervention in
DLBCL. For example, ANXA1l, a calcium-regulated

phospholipid-binding protein, has been implicated in
other oncological conditions such as colorectal cancer,
gastric cancer and ovarian cancer and could be a novel
therapeutic intervention point in DLBCL [54-56].

One of the major clinical advantages of the approach
to DLBCL subtyping described here lies in the simplified
laboratory methodology and workflow. Conventional,
gold-standard subtyping by GEP can be done using a
variety of commercial platforms but all generally follow
(and require) a four-step approach: 1) acquisition of a
tissue biopsy, 2) preparation of FFPE tissue sections 3)
gene expression analysis and 4) algorithmic classification
of subtype. Obtaining a fine needle tissue biopsy of an
enlarged, peripheral lymph node requires an inpatient
visit to a clinical site and an invasive medical procedure
requiring anaesthetic. Once obtained, the fresh biopsy
needs to be prepared for paraffin embedding. This is a
multi-step process, but generally involves immersion in
liquid fixing agent (such as formalin) long enough for it
to penetrate through the entire specimen, sequential de-
hydration through an ethanol gradient, followed by
clearing in xylene, a toxic chemical. Last, the biospeci-
men needs to be infiltrated with paraffin wax and left to
cool so that it solidifies and can be cut into micrometer
sections using a microtome and mounted onto labora-
tory slides. The entire process of going from fresh tissue
to FFPE sections on a slide can take several days. Next,
in order to perform gene expression analysis, inherently
unstable RNA is extracted from slide-mounted tissue
sections and prepared for hybridization to microarrays
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according to the array manufacturer’s specifications, a
process that can take over a day. Following microarray
hybridization, digital readouts of relative gene expression
levels for the are obtained and fed into a classification al-
gorithm to determine DLBCL subtype. All told, the
process of going from a patient with suspected DLBCL
to a subtype readout can take up to a week or longer, in-
volves many different experimental steps using expensive
technologies, each of which has the potential to intro-
duce experimental variability along the way. In the ap-
proach described here, the time and the number of steps
from biofluid collection to subtype readout are dramatic-
ally decreased. A patient with suspected DLBCL can
present to an outpatient clinic for a routine, small vol-
ume (~ 1 mL) blood draw. Fresh frozen blood can then
be shipped to a central, accredited reference lab for ana-
lysis of the absence/presence of the chromosome confor-
mations identified in this study; a process that uses an
even smaller volume (~50 mL) of whole blood as input
along with specific PCR primer sets and reaction condi-
tions to detect the chromosome conformations using
simple and routine PCR instrumentation in less than 24
h from sample receipt. The approach to DLBCL subtyp-
ing described here offers an additional advantage in that
the potential for further refinement using the proposed
methodology exists. In this study, final readout of the
DLBCL-CCS was done using a set of nested PCR reac-
tions to detect chromosome conformations making up
the classifier. This PCR-based output can be further re-
fined to utilize quantitative PCR as a readout and oper-
ate under the minimum information for publication of
quantitative real-time PCR experiments (MIQE) guide-
lines, designed to enhance experimental reproducibility
and reliability across reference labs and testing sites.

Last, the approach described here is adaptable to the
evolving understanding of the disease itself. Recent stud-
ies have suggested that DLBCL is more physiologically
heterogeneous than initially appreciated and rather than
simply two subtypes, a spectrum of different genetic sub-
types exist [57]. While more detailed clinical annotations
described in this work were not available at the time of
the study, the general discovery approach taken here can
easily be applied to additional sample cohorts.

While the current study focused on assessing chromo-
some conformation changes in specific disease context,
the general approach described has broader applications.
The results presented here are consistent with the recent
evidence of epigenetic markers acting as strong, sys-
temic, surrogate signatures across oncological conditions
[58]. While DLBCL serves as a notable example where the
need to assess the molecular characteristics of a disease in
order to guide treatment strategies, there are many other
oncological conditions where the need for objective, reli-
able, and easily measured molecular biomarkers are
needed; especially in cases where patient prognosis is poor
and/or there is an increasing availability of molecularly
targeted therapeutic options. A notable example in oncol-
ogy is the development of checkpoint inhibitor therapies,
where a multitude of drugs targeting the PD-L [1] path-
way have been approved or are in development, but where
biomarkers for prediction of response are lacking [59, 60].
Recently, profiling of chromosome conformation signa-
tures in peripheral blood has shown utility in the predic-
tion of response to checkpoint inhibitor therapy, prior to
the start of treatment, in patients with non-small cell lung
cancer and other cancers; with better clinical performance
characteristics than current molecular approaches [61—
63]. In sum, our results suggest that the application of 3D
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genomics technologies that assess systemic alterations in
genome topology represent a novel and informative class
of emerging molecular biomarkers for the assessment of
oncological disease and response to therapeutic
intervention.

Conclusion

In conclusion, here we developed a robust complemen-
tary method for non-invasive COO assignment from
whole blood samples using EpiSwitch CCSs readouts.
We demonstrated the clinical validity of this classifica-
tion approach on a large cohort of DLBCL patients.
Chromosome conformations have emerged as a promis-
ing new class of biomarkers in oncology. In fact, a recent
study performed Hi-C on primary B-cells of a DLBCL
patient and detected significant structural variation be-
tween the DLBCL patient and healthy B-cells [64, 65].
The EpiSwitch platform has several attractive features as
a biomarker modality with clinical utility. CCSs have
very high biochemical stability, can be detected using
very small amounts of blood (typically around 50 pl) and
detection utilizes established laboratory methodologies
and standard PCR readouts (including MIQE-compliant
qPCR) [26]. Finally, the rapid turnaround time (~8-16
h) of the EpiSwitch assay compares favourably to the
over 48 h for the Fluidigm platform [66]. The application
of this complementary assay can enable prospective se-
lection of patients for therapeutic clinical trials and ul-
timately, can be used to guide appropriate patient
management in clinical practice.
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analysis showed that by the and EpiSwitch (obdcall) subtype calls (A),
there was a trend towards increased likelihood of survival for GBC
subtypes, though not statistically significant. In contrast, subtype calls
made by the Fluidigm assay (fdgcall)(B) showed no difference in the
influence of DLBCL subtype on survival.
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